Correction: Renal denervation in an animal model of diabetes and hypertension: Impact on the autonomic nervous system and nephropathy

Lucinara D Dias, Karina R Casali, Natalia M Leguisamo, Felipe Azambuja, Martina S Souza, Maristela Okamoto, Ubiratan F Machado, Maria Cláudia Irigoyen, and Beatriz D Schaan

Correction
After publication of this work [1], we noted an error in the results section of the abstract. The results for heart rate and the LF component of AP variability for the SHR sample were omitted from the list. The corrected results section appears below.

Results
Higher glycemia (p < 0.05) and lower mean AP were observed in diabetics vs. nondiabetics (p < 0.05). Heart rate was higher in renal-denervated hypertensive and lower in diabetic-hypertensive rats (384.8 +/− 37, 431.3 +/− 36, 316.2 +/− 5, 363.8 +/− 12 bpm in SHR, RD-SHR, STZ-SHR and RD-STZ-SHR, respectively). Heart rate variability was higher in renal-denervated diabetic-hypertensive rats (69.84 ± 37.91, 55.75 ± 25.21, 73.40 ± 53.30, 148.4 ± 93 in SHR, RD-SHR, STZ-SHR- and RD-STZ-SHR, respectively, p < 0.05), as well as the LF component of AP variability (5.17 ± 5.24, 1.62 ± 0.9, 2.12 ± 0.9, 7.38 ± 6.5 in SHR, RD-SHR, STZ-SHR and RD-STZ-SHR, respectively, p < 0.05). GLUT2 renal content was higher in all groups vs. SHR.

Author details
1Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Brazil. 2Universidade Federal do Rio Grande do Sul, Endocrine Division HCPA, Porto Alegre, Brazil. 3Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. 4Instituto do Coração (INCOR), São Paulo, Brazil.

Received: 27 May 2011 Accepted: 7 June 2011 Published: 7 June 2011

Reference

Cite this article as: Dias et al.: Correction: Renal denervation in an animal model of diabetes and hypertension: Impact on the autonomic nervous system and nephropathy. Cardiovascular Diabetology 2011 10:49

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

© 2011 Dias et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.