Review

Classification of tumours

Helge L Waldum*1, Arne K Sandvik1, Eiliv Brenna1, Reidar Fossmark1, Gunnar Qvigstad1 and Jun Soga2

Address: 1Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, Trondheim University Hospital, NO-7006 Trondheim, Norway and 2Niigata University, Niigata, Japan

Email: Helge L Waldum* - helge.waldum@ntnu.no; Arne K Sandvik - arne.sandvik@ntnu.no; Eiliv Brenna - eiliv.brenna@ntnu.no; Reidar Fossmark - reidar.fossmark@stolv.no; Gunnar Qvigstad - gunnarq@ntnu.no; Jun Soga - soga-j@ginzado.ne.jp

* Corresponding author

Published: 14 November 2008

Received: 16 October 2008

Accepted: 14 November 2008

This article is available from: http://www.jeccr.com/content/27/1/70

© 2008 Waldum et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Tumours are classified according to the most differentiated cells with the exception of carcinomas where a few tumour cells show neuroendocrine differentiation. In this case these cells are regarded as redifferentiated tumour cells, and the tumour is not classified as neuroendocrine. However, it is now clear that normal neuroendocrine cells can divide, and that continuous stimulation of such cells results in tumour formation, which during time becomes increasingly malignant. To understand tumourigenesis, it is of utmost importance to recognize the cell of origin of the tumour since knowledge of the growth regulation of that cell may give information about development and thus possible prevention and prophylaxis of the tumour. It may also have implications for the treatment. The successful treatment of gastrointestinal stromal tumours by a tyrosine kinase inhibitor is an example of the importance of a correct cellular classification of a tumour. In the future tumours should not just be classified as for instance adenocarcinomas of an organ, but more precisely as a carcinoma originating from a certain cell type of that organ.

During tumourigenesis cellular phenotype changes as mutations occur and accumulate. Most mutations result in functional loss. However, when mutations affect an inhibitory mechanism, the net result may be a gain of function. Typically in malignant cells such a loss results in increased proliferation and/or gain in the ability to invade surrounding structures or to spread from the tissue of origin (metastasize). In order to grow beyond a critical cell mass new blood vessels have to develop in the tumour (angiogenesis). Morphologically, tumour cells change their appearance at the cytological level (cellular atypia) and their growth pattern (dysplasia). Such gradual changes are typically seen in tumours of the colon where adenomas with different degrees of dysplasia or overt carcinomas are seen [1], occasionally in the same patient. Similarly, a gradual transition from normal to dysplastic to malignant growth can be seen in the enterochromaffin like (ECL) cells in the oxyntic mucosa [2] particularly after long-term hypergastrinemia in man [3] as well as animals [4]. It is well-known that the cells of highly malignant tumours may have changed so much that the cell of origin may be difficult to recognize in so-called dedifferentiated or anaplastic tumours. Often, however, parts of the tumour are more differentiated, and it is generally accepted that a tumour is classified according to its most differentiated part. There is, however, one exception to this classification, namely when a few neuroendocrine tumour cells are found among dedifferentiated and anaplastic tumour cells [5]. In such cases the tumours are classified according to the presumed origin of the majority of
the cells, and the neuroendocrine differentiated tumour cells are neglected. These neuroendocrine tumour cells are considered to be the result of a neuroendocrine redifferentiation of an exocrine derived tumour cell [6,7].

Neuroendocrine tumours

Neuroendocrine tumours are generally difficult to classify into benign or malignant tumours [8]. Tumours with a highly differentiated and almost normal phenotype may prove to be malignant based upon the detection of local invasion or metastasis, which may be found years after removal of the initial tumour [9]. Thus, neuroendocrine tumours may morphologically look rather benign and grow slowly, but nevertheless they have the ability to metastasize. This property may be explained by an effect of their normal mediators on the surrounding tissues. Thus, these mediators like for instance histamine from the ECL cell, may dilate the vascular bed and at the same time increase the permeability of the capillaries making it easier for the tumour cells to gain access to the blood [10]. Moreover, histamine and other substances from neuroendocrine cells have a stimulatory effect on angiogenesis [11]. In other words, many of these neuroendocrine cells normally produce substances making it easier for these cells to grow and disseminate. This may also explain why such tumours may not need so many mutations and accordingly not be so changed phenotypically as other tumours, while still having the ability to metastasize.

In many tumours classified as adenocarcinomas based upon a glandular growth pattern and/or tumour cells positive for PAS or Alcian blue and thus believed to contain mucin, there are tumour cells with neuroendocrine properties [12]. These neuroendocrine cells are believed to be redifferentiated exocrine derived tumour cells [6,7]. Consequently, these cells do not have any implication for the classification of the tumour. However, when increasing the sensitivity of immunohistochemistry by tyramide signal amplification (TSA) [13], the number of chromogranin A (CgA) positive tumour cells are greatly increased [14]. CgA occurs exclusively in the neuroendocrine granules and such immunoreactivity is thus specific for neuroendocrine derived cells [15]. Thus, neuroendocrine tumour cells in anaplastic tumours may represent the most differentiated tumour cells in the dedifferentiated neuroendocrine tumour. If so, these tumours must have their origin in neuroendocrine cells, which have gradually become more malignant. In the oxyntic mucosa of the stomach the ECL cell has a key position in the regulation of acid secretion [16], and this cell is regulated both functionally as well as trophically by gastrin [16,17]. Tumours developing from the ECL cell are classified into three types according to presumed aetiology: groups I and II being related to hypergastrinemia whereas group III tumours apparently occur in normogastrinemic individu-
exocrine cells, can occur without self-replication. Moreover, we have been able to describe self-replication of neuroendocrine cells in cancer cells both in the prostate and gastric carcinomas. Very recently, indeed adult beta-cells of the islets of Langerhans were described to be formed by self-duplication rather than differentiation from stem-cell.

Classification of the cell of origin in cancers

To make a correct classification of cellular origin of tumours it is necessary to use immunohistochemistry with antibodies directed against antigens with high specificity, and apply the methods with the highest sensitivity. Is it of importance to make a correct cellular classification of tumours? If the correct cellular classification of tumours does not give any indication of prognosis or treatment, it may be argued that the effort is pointless. This is, however, not true, since a correct cellular classification indicates the pathogenesis of the tumour and thus may be important for the prevention of the tumour based upon knowledge of the growth regulation of the cell of origin. Since the more differentiated type I gastric carcinoids are the most common type and gastrin plays such a dominant role in the trophic regulation of the ECL cell, hypergastrinemia will be expected to increase most tumours of ECL cell origin. Only ECL cell tumours with very early and activating mutations in the gastrin receptor can be assumed to be completely gastrin independent. What the case is in the so-called ECL cell tumours of type III remains to be shown. On the other hand, somatostatin acting via the somatostatin subtype 2 receptor has a negative trophic effect on the ECL cell, which may be used to treat ECL cell derived carcinoids at an early stage.

In conclusion, a correct classification of the cell of origin will greatly increase our biological understanding of carcinogenesis, give rise to new possibilities for prevention and early treatment, and possibly to tailor new drugs for the treatment of the tumours.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The manuscript is based upon the works of two separate groups: JS in Japan working in the area of pathology devoting his life to neuroendocrine pathology, and HLW, Norway starting within physiology, showing the central role of the ECL cell in gastric physiology and transforming this knowledge into pathology. AKS, EB, RF and GQ have taken part in these studies during a long time: AKS in physiology (isolated rat stomach) and molecular medicine, EB in physiology (aminopyrine uptake in isolated parietal cells) and trophic studies, RF in animal tumour models (Japanese cotton rat) and electron microscopy and GQ in gastric physiology in man and pathology in animals and man. All authors have read and approved the final manuscript.

References

