Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells

VA Evans1*, S Saleh1, EK Haddad2,3, PU Cameron1,4, R-P Sekaly2,3, SR Lewin1,4,5

From International AIDS Society’s Workshop “Towards a Cure”: HIV Reservoirs and Strategies to Control Them Vienna, Austria. 16-17 July 2010

Background
Resting CD4+ T cells within lymphoid tissues are a reservoir of latent infection; however, in isolated resting CD4+ T cells, several blocks exist that restrict HIV-1 replication. We hypothesize that interactions with dendritic cells (DCs) within lymphoid tissues contribute to the establishment of latency.

Methods
SNARF-labelled resting CD4+ T cells were cultured alone or with DC for 24 prior to mock infection or infection with a CCR5-using, EGFP-reporter virus. Non-proliferating (SNARFhi) CD4+ T cells that were not productively infected (EGFP-) were purified five days post infection and: (1) latent infection was reactivated and amplified by co-culturing the sorted cells with mitogen-stimulated PBMC for five days; and (2) gene expression changes were compared in sorted non-proliferating CD4+ T cells cultured in the presence or absence of DCs with or without HIV-1 infection using oligonucleotide microarrays.

Results
In the presence of DCs, a significant increase in the number of latently infected non-proliferating CD4+ T cells (p=0.01) was observed when compared with resting CD4+ T cells cultured alone. These cells had not entered into the cell cycle as confirmed by the lack of Ki67 expression, although 2% of the DC co-cultured cells did express the early activation marker CD69. Post-integration latency was detected in the non-proliferating CD4+ T cells following co-culture with sorted myeloid (mDC) but not plasmacytoid DC (pDC), which was confirmed using Alu-LTR PCR to detect integrated HIV-1 DNA (11,000 and <300 copies/million cells, respectively). We identified 193 genes that were differentially expressed in the latently infected non-proliferating CD4+ T cells. Observations include the induction of multiple genes associated with cell cycle arrest and the inhibition of HIV-1 transcription.

Conclusions
Our results suggest a possible pathway for mDC-induced latency in CD4+ T cells in which low levels of cell activation may allow for enhanced HIV-1 integration, but subsequent blocks in transcription and cell proliferation prevent progression to productive infection.

Author details
1 Monash University, Department of Medicine, Victoria, Australia. 2 CHUM Research Center, Saint-Luc Hospital, Montreal, Canada. 3 VGTI-Florida, Port St Lucie, USA. 4 Alfred Hospital, Infectious Diseases Unit, Melbourne, Australia. 5 Burnet Institute, Melbourne, Australia.

Published: 4 November 2010


Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

* Correspondence: Vanessa.Evans@monash.edu
1 Monash University, Department of Medicine, Victoria, Australia
Full list of author information is available at the end of the article

© 2010 Evans et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.