Of mice and men (and sheep, swine etc.): The intriguing hemodynamic and metabolic effects of hydrogen sulfide (H₂S)

Katja Wagner¹, Michael Georgieff ¹, Pierre Asfar², Enrico Calzia¹, Markus W Knöferl³ and Peter Radermacher*¹

See related research of Derwall et al., http://ccforum.com/content/15/1/R51

Abstract

Whether the hydrogen sulfide (H₂S)-induced metabolic depression observed in awake rodents exists in larger species is controversial. Therefore, Derwall and colleagues exposed anesthetized and ventilated sheep to incremental H₂S concentrations by means of an extracorporeal membrane oxygenator. H₂S caused pulmonary vasoconstriction and metabolic acidosis at the highest concentration studied. Oxygen uptake and carbon dioxide production remained within the physiological range. The authors concluded that, beyond the effect of temperature, H₂S hardly modifies metabolism at all. Since the highest H₂S concentration caused toxic side effects (possibly due to an inhibition of mitochondrial respiration), the therapeutic use of inhaled H₂S should be cautioned.

In the previous issue of Critical Care, Derwall and colleagues [1] reported on the effects of gaseous hydrogen sulfide (H₂S) (100 to 300 parts per million) in healthy, anesthetized, and mechanically ventilated sheep. To avoid any airway irritation, the authors used an elegant approach to circumvent inhaling H₂S (that is, administration via an extracorporeal, veno-arterial membrane oxygenator). The major findings were that (a) whole body oxygen uptake (VO₂), carbon dioxide production (VCO₂), and cardiac output remained within the physiological range but that (b) H₂S caused pulmonary vasoconstriction, which was (c) associated with a fall in blood pressure and metabolic acidosis at the highest doses administered.

In a landmark paper, Blackstone and colleagues [2] demonstrated that, in awake, spontaneously breathing mice, inhaling H₂S induced a hibernation-like metabolic state characterized by reduced energy expenditure and hypothermia. Subsequently, Volpato and colleagues [3] reported that this metabolic depression was associated with bradycardia and reduced cardiac output but that blood pressure and stroke volume remained unaffected. Consequently, given the exciting prospect of pharmacologically reducing energy expenditure to protect against ischemia (‘suspended animation’ [2]) by application of a gaseous drug, the effects of inhaled H₂S were investigated in various models. In fact, inhaled H₂S protected rodents against otherwise lethal hypoxia [4] and hemorrhage [5] and attenuated murine kidney and lung injury [6-8]. Equivocal data, however, are available from large animals: inhaled H₂S failed to show any metabolic effect in sheep or swine [9,10], and the intravenous H₂S donor sodium sulfide (Na₂S) was reported either to reduce energy expenditure [11] or to have no effect at all [12].

What do we learn from the study by Derwall and colleagues [1]? The authors confirm previous data in the same species [9] that even a fivefold-higher concentration of inhaled H₂S did not depress energy expenditure. Since the authors maintained the body temperature, they speculate that in larger species H₂S can hardly affect metabolism at all beyond the effect of temperature per se (the ‘Q₁₀ effect’: the fall of VO₂ and VCO₂ associated with a 10°C decrease), in particular when metabolism is already depressed. In fact, in anesthetized and mechanically ventilated mice subjected to deliberate hypothermia, inhaled H₂S had no further metabolic and circulatory effects [13]. Moreover, in larger adult animals, non-shivering thermogenesis is negligible and thus cannot be influenced such as in small animals (for example, mice) with a metabolic rate that is 15- to 20-fold higher than that of humans [9]. Finally, any Na₂S-related therapeutic effect in larger animals was independent of body temperature [14-16].
What is the future of H$_2$S in critical care medicine? The vascular effects of H$_2$S are still controversial: Derwall and colleagues [1] found a dose-dependent pulmonary vasomotor response, which at first glance agrees with the hypoxia-sensing properties attributed to H$_2$S [17]. However, the mixed venous oxygen partial pressure (PO$_2$) was 50 to 55 mm Hg (that is, clearly above the range that induced hypoxic vasconstriction of isolated pulmonary arteries of cows [17]). In addition, the pulmonary vascular vasoconstriction to H$_2$S in vitro showed marked interspecies differences, so that any effect in the critically ill patient is difficult to anticipate [17]. The systemic vasomotor effect of H$_2$S is equally intriguing: endogenous H$_2$S is a physiological vasodilator and thus assumes major importance in the control of blood pressure [18].

Derwall and colleagues [1] report that the highest H$_2$S concentration caused marked systemic vasodilation, whereas other authors [11,16] found that Na$_2$S reduced the noradrenaline doses required to achieve hemodynamic targets during reperfusion after porcine aortic balloon occlusion.

The appropriate H$_2$S dose is also unknown: in the previous large animal studies, a 25-fold range of intravenous Na$_2$S infusion rates was used [11,12,14-16], and, as in the present investigation, higher infusion rates over longer periods of time impaired pulmonary gas exchange [11,12]. The significant metabolic acidosis affiliated with the highest H$_2$S concentration deserves particular attention, but unfortunately the authors did not further elucidate this finding. It is tempting to speculate that inhibition of mitochondrial respiration with subsequent reduction of aerobic capacity caused this metabolic acidosis: H$_2$S is a well-established inhibitor of the cytochrome C oxidase, and the subtle increase in the respiratory quotient that can be derived from the mean VO$_2$ and VCO$_2$ values before and after exposure to 300 parts per million H$_2$S, respectively, replicates data reported on the effects of H$_2$S inhalation in exercising humans [19]. Finally, as the authors themselves acknowledge, the fate of exogenous H$_2$S remains unclear: they found, in the efferent blood of the extracorporeal membrane lung, sulfide levels that were associated with near-complete inhibition of the respiratory chain in vitro [13]. The arterial blood concentrations, however, were in the same range as measured during Na$_2$S infusion in swine, in which Na$_2$S protected against myocardial [16] and renal [17] ischemia/reperfusion injury.

In conclusion, Derwall and colleagues performed an elegant ovine study to test whether a pharmacological (that is, H$_2$S-induced) metabolic depression can be achieved in large animals. While the authors did not find any gross modifications of energy expenditure, they observed several intriguing hemodynamic and acid-base effects, which confirm the complex actions of this ‘third gaseous mediator’.

Abbreviations

H$_2$S, hydrogen sulfide; Na$_2$S, sodium sulfide; VCO$_2$, carbon dioxide production; VO$_2$, oxygen uptake.

Competing interests

PI received research grants from Ixaria, Inc. (Seattle, WA, USA), a company involved in the commercial development of hydrogen sulfide. The other authors declare that they have no competing interests.

Acknowledgments

This commentary was supported by the Deutsche Forschungsgemeinschaft (DFG Ra 396/9-1, Klinische Forschergruppe 200 ‘Die Entzündungsantwort nach Muskulo-Skeletalem Trauma’) and the Bundesministerium der Verteidigung (Forschungsvorhaben MVSA8/8A004).

Author details

1. Sektion Anaesthesiologische Pathophysiologie und Verfahrensentwicklung, Klinik für Anaesthesiologie, Universitätssklinikum Ulm, Parkstrasse 11, D-89081 Ulm, Germany. 2Laboratoire HIFIH, UPRES EA 3859, IFR 132, Université d’Angers, Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalo-Universitaire, 4 rue Larrey, F-49035 Angers, France. 3Klinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie, Universitätssklinikum Ulm, Steinhövelstrasse 9, D-89070 Ulm, Germany.

Published: 4 April 2011

References

doi:10.1186/cc10079
Cite this article as: Wagner K, et al. Of mice and men (and sheep, swine etc.): The intriguing hemodynamic and metabolic effects of hydrogen sulfi de (H\textsubscript{2}S). Critical Care 2011, 15:146.