Hasslacher and colleagues have provided a new piece of data regarding pleiotropic effects of levosimendan [1]. In their elegantly designed study, the authors showed in both in vitro and in vivo experiments that levosimendan ‘cools down’ oxidative burst in polymorphonuclear neutrophils, and hence prevents or decreases the deleterious effects of reactive oxygen species. Levosimendan is known not only to be an inodilator but also to exert cellular protective effects by antioxidant, anti-inflammatory, and anti-apoptotic properties [2-4]. Herein, the authors seem to puzzle out one piece of the whole pathophysiologic mechanism driving septic-shock-induced myocardial depression via cooling down the oxidative burst of circulating cells.

Hasslacher and colleagues have provided a new piece of data regarding pleiotropic effects of levosimendan [1]. In their elegantly designed study, the authors showed in both in vitro and in vivo experiments that levosimendan ‘cools down’ oxidative burst in polymorphonuclear neutrophils, and hence prevents or decreases the deleterious effects of reactive oxygen species. Levosimendan is known not only to be an inodilator but also to exert cellular protective effects by antioxidant, anti-inflammatory, and anti-apoptotic properties [2-4]. Herein, the authors seem to puzzle out one piece of the whole pathophysiologic mechanism driving septic-shock-induced myocardial depression via cooling down the oxidative burst of circulating cells.

Decreased respiratory burst activity of polymorphonuclear neutrophils in the study could possibly be driven by the membrane hyperpolarizing effect of levosimendan or phosphodiesterase III inhibitory effects, which is mainly observed at high doses. Actually, measuring plasma levels of levosimendan could have been helpful in understanding which mechanism dominated. Whatever the mechanism, such an effect should be kept in mind to tailor the therapy of patients suffering from potentially hazardous complications of excess reactive oxygen species including septic shock. Of note, upon preload optimization by fluid administration and/or vasopressor treatment in the study, levosimendan treatment seemed to be well accepted by the patients. However, the reason for the lack of a relationship between a decrease in oxidative burst and survival might be linked to the time of initiation of drug administration. Inotropic therapy is usually considered a last option in many patients, and oxidative burst could possibly have already done its irreversible injury in such patients. We think the present study provides a unique opportunity to move faster in decision-making and therapy.

Competing interests
AM received honorarium for lectures from Orion Pharma. MBY declares no competing interests.

Author details
1 Cumhuriyet University School of Medicine, Department of Cardiology, Sivas, Turkey. 2 Department of Anesthesiology and Critical Care Medicine, Hospital Lariboisière, APHP, Université Paris Diderot Paris 7, U942 Inserm Paris, France.

Published: 18 August 2011

References

Cite this article as: Yilmaz MB, Mebazaa A. In vivo and in vitro evidence for pleiotropic effects of levosimendan in the intensive care setting. *Critical Care* 2011, 15:182.